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+

=

cool story about the 
temporal dynamics of memory
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Encoding Variability Theories

Each study episode, a separate trace is laid down.

The trace includes a psychological context.

Context wanders over time.
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During retention interval, context 
wanders
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Encoding Variability Explains DP Effect

Study item at S1

Study item at S2

Test at T

Retrieval success at T depends on 
similarity of cT to either cS1 or cS2

Disadvantage for small ISIs: redundancy of cS1 and cS2.
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Raaijmakkers (2003)

Context is represented by pool of binary valued neurons.

Each item to be learned represented by an output neuron.

Hebbian learning rule

Output activity at test ~ recall probability

depends on similarity of study and test contexts

Multiple study opportunities ⇒ context variability 
⇒ robust recall

study 1 context study 2 context test context
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unit active at both study and test.

Expected output neuron activity ~ 
P(retrieval) ~ P(CS = 1 & CT = 1)



Raaijmakkers (2003): Formal Description

Retrieval at test facilitated when context 
unit active at both study and test.

Expected output neuron activity ~ 
P(retrieval) ~ P(CS = 1 & CT = 1)

How does context wander over time?

context bits flip from off to on at rate µ01

context bits flip from on to off at rate µ10

P(CS = 1 & CT = 1) = β
2 + β(1–β) exp (– α RI)

flip rate: µ01 + µ10

retention interval

proportion on : µ01 / (µ01 + µ10)
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What It Boils Down To

Forgetting function is exponential

Human forgetting functions follow a power law
(Wickelgren, 1974; Wixted & Carpenter, 2007):

P(retrieval) = λ(1 + ϕ RI)-φ

Power law shows scale invariance

I.e., memory shows same properties at different time scales
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Is it a problem that Raaijmakkers’ (2003) model doesn’t show 
scale invariance?

Yes, distributed practice effects are scale invariant.

Model has other problems too.

• Many free parameters and ugly hacks

• Doesn’t fit data particularly well
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Predictive Utility Theories

Suppose that memory
• is limited in capacity, and/or
• is imperfect and allows intrusions.

To achieve optimal performance, memories should be erased if 
they are not likely to be needed in the future.
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• is imperfect and allows intrusions.

To achieve optimal performance, memories should be erased if 
they are not likely to be needed in the future.
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Staddon, Chelaru, & Higa (2002)

Rats habituate to a repeated stream of stimuli.

Time for recovery from habituation ~ rate of stimuli

Longer-lasting memory for stimuli delivered at slower rate

...

...
time



Staddon, Chelaru, & Higa (2002)

Each item to be learned represented by memory consisting of 
leaky integrators at multiple time scales.
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Staddon, Chelaru, & Higa (2002)

Each item to be learned represented by memory consisting of 
leaky integrators at multiple time scales.

Memory trace is the sum of the integrator activities.

Memory storage rule

Integrators with long time constants get activated only when integrators with short 
time constants have decayed.
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Example

10 integrators

Stimulus repeatedly 
presented at various ISIs

Greater spacing ⇒ 
memory shifts to longer 
time-scale integrators ⇒ 
more durable memory



Example

10 integrators

Stimulus repeatedly 
presented at various ISIs

Greater spacing ⇒ 
memory shifts to longer 
time-scale integrators ⇒ 
more durable memory

Model is sensitive to 
predictive utility

Slower forgetting following 
longer ISI stimulus sequences.



Model was fit to rat habituation and interval timing data, 

... but isn’t sufficiently well specified to explain human studies 
of distributed practice.



Two Models Share Key Property:
Exponential Decay of Internal Representations

This commonality allows us to integrate the two models.
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Combine
• multiple time-scale representation of Staddon’s model
• contextual drift of Raaijmakkers’ model

→ Multiscale Context Model



Multiscale Context Model (MCM)

In pool p, all units flip state at rate αp.

The pools can be different sizes:
the relative proportion of units in pool p is γp. 

Retrieval function is a mixture of exponentials.

P(retrieval) ~ 

Mixture of exponentials can approximate human forgetting functions (Wixted).

pool 2 pool 3 pool N...pool 1

γpexp αpRI–( )
p
∑

+ + =



Use Simple Formula to Pick Pool Size (γ) and Rate (α)

αp = µ ν
p for 

γp = ω
p

MCM has four free parameters (µ, ν, ω, + one more)

Can we select these parameters such that resulting model 
yields power law forgetting function and good fits to human 
data?
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Fitting Forgetting Functions I

Cepeda et al., Expt 2B
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Fitting Forgetting Functions II

Cepeda et al., Expt 2A

10
−2

10
−1

10
0

10
1

10
2

10
3

10
−0.6

10
−0.5

10
−0.4

10
−0.3

10
−0.2

10
−0.1

time

P
(r

ec
al

l)
µ = 0.895493 ν = 0.036367 ω = 0.250869

Retention Interval (log scale)

R
e
c
a
ll
 P

ro
b
a
b
il
it
y



Fitting Forgetting Functions III

P(recall) = .9(1 + .5 t)-0.9
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Fitting Forgetting Functions IV

P(recall) = (1 + t)-1.4
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Multiscale Context Model: A Convergence of Theories
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Multiscale Context Model: A Convergence of Theories

Raaijmakkers 
(2003)

Staddon et al. 
(2002)

Our 
Contribution

context drift X

multiple
time-scale 

representation
X

learning rule

X
(dependence of 

learning on 
retrieval success)

X
(cascaded error 
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variable pool size X

parameterization 
of multiscale 
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X
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Cepeda, Coburn, Rohrer, Wixted, Mozer, & Pashler
(in press)
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Simulation of 
Cepeda, Vul, 
Rohrer, Wixted, 
& Pashler
(in press)
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The Relationship Between RI and Optimal ISI



The Relationship Between RI and Optimal ISI

Cepeda et al. metaanalysis
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Simulation of Multiscale Context Model

Random parameter settings of model over a large range
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Simulation of Multiscale Context Model

Random parameter settings of model over a large range
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Why Are We Proposing Yet Another Model?

Previous models
• have many free parameters, and
• obtain only post hoc fits to data.

Our goal is to develop a truly predictive model.

Few free parameters

Parameters are fully constrained by the forgetting function

Given forgetting function, optimal distribution of practice can be predicted.
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Current Research

• Exploring DP effects with three study sessions

Human study (Kang, Pashler, and Lindsey)

Comparing predictions of two different models 
(Lindsey and Mozer)

* MCM: equal spacing is generally best,but dependent on 
specific materials

* Pavlik & Anderson: decreasing spacing best
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Current Research

• Exploring DP effects with three study sessions

Human study (Kang, Pashler, and Lindsey)

Comparing predictions of two different models 
(Lindsey and Mozer)

* MCM: equal spacing is generally best,but dependent on 
specific materials

* Pavlik & Anderson: decreasing spacing best

• Exploring DP effects with more complex materials

legal, scientific reasoning (Pashler, Coburn, and Carpenter)

• Developing Facebook app for learning important facts: 
survival tactics

Natural language interface to allow unrestricted answers (Homaei)

Eventually will use MCM to dynamically optimize study session spacing to 
promote long-term retention (Lindsey and Mozer)
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The End




