Mechanisms Of The Distributed Practice Effect

Michael Mozer

University of Colorado

Harold Pashler UCSD

Reminder: The Basic Paradigm

Reminder: The Basic Paradigm

- Encoding variability
- Predictive utility

- Encoding variability
 Raaijmakkers (2003)
- Predictive utility Staddon, Chelaru, & Higa (2002)

- Encoding variability
 Raaijma
 - Predictive utility

Raaijmakkers (2003) + Staddon, Chelaru, & Higa (2002)

cool story about the temporal dynamics of memory

Encoding Variability Theories

Encoding Variability Theories

- Each study episode, a separate trace is laid down.
- The trace includes a psychological context.
- **Context wanders over time.**

Study item at S

Study item at S

During retention interval, context wanders

- Study item at S
- During retention interval, context wanders
- Test at T

Retrieval success depends on similarity of c_T and c_S

Study item at S1

Study item at S1

Study item at S2

- Study item at S1
- Study item at S2
- Test at T

Retrieval success at T depends on similarity of c_T to either c_{S1} or c_{S2}

Disadvantage for small ISIs: redundancy of c_{S1} and c_{S2} .

Context is represented by pool of binary valued neurons.

Context is represented by pool of binary valued neurons.

Each item to be learned represented by an output neuron.

- **Context is represented by pool of binary valued neurons.**
- Each item to be learned represented by an output neuron.
- **Hebbian learning rule**

- **Context is represented by pool of binary valued neurons.**
- Each item to be learned represented by an output neuron.
- **Hebbian learning rule**

Output activity at test ~ recall probability

depends on similarity of study and test contexts

- **Context is represented by pool of binary valued neurons.**
- Each item to be learned represented by an output neuron.
- **Hebbian learning rule**
- **Output activity at test ~ recall probability**
 - depends on similarity of study and test contexts
- Multiple study opportunities \Rightarrow context variability \Rightarrow robust recall

Raaijmakkers (2003): Formal Description

Retrieval at test facilitated when context unit active at both study and test.

Expected output neuron activity ~ P(retrieval) ~ $P(C_S = 1 \& C_T = 1)$

Raaijmakkers (2003): Formal Description

Retrieval at test facilitated when context unit active at both study and test.

Expected output neuron activity ~ P(retrieval) ~ $P(C_S = 1 \& C_T = 1)$

How does context wander over time?

context bits flip from off to on at rate μ_{01} context bits flip from on to off at rate μ_{10} P(C_S = 1 & C_T = 1) = $\beta^2 + \beta(1-\beta) \exp(-\alpha RI)$ retention interval flip rate: $\mu_{01} + \mu_{10}$ proportion on : $\mu_{01} / (\mu_{01} + \mu_{10})$

What It Boils Down To

Forgetting function is exponential

What It Boils Down To

Forgetting function is exponential

Human forgetting functions follow a power law (Wickelgren, 1974; Wixted & Carpenter, 2007):

 $P(retrieval) = \lambda(1 + \varphi RI)^{-\phi}$

What It Boils Down To

Forgetting function is exponential

Human forgetting functions follow a power law (Wickelgren, 1974; Wixted & Carpenter, 2007):

P(retrieval) = $\lambda (1 + \varphi RI)^{-\phi}$

Power law shows scale invariance

I.e., memory shows same properties at different time scales

Is it a problem that Raaijmakkers' (2003) model doesn't show scale invariance?

Yes, distributed practice effects are scale invariant.

Model has other problems too.

- Many free parameters and ugly hacks
- Doesn't fit data particularly well

Predictive Utility Theories

Predictive Utility Theories

- Suppose that memory
- is limited in capacity, and/or
- is imperfect and allows intrusions.

To achieve optimal performance, memories should be erased if they are not likely to be needed in the future.

Predictive Utility Theories

- Suppose that memory
- is limited in capacity, and/or
- is imperfect and allows intrusions.

To achieve optimal performance, memories should be erased if they are not likely to be needed in the future.

Rats habituate to a repeated stream of stimuli.

Time for recovery from habituation ~ rate of stimuli

Longer-lasting memory for stimuli delivered at slower rate

Each item to be learned represented by memory consisting of *leaky integrators* at multiple time scales.

Each item to be learned represented by memory consisting of *leaky integrators* at multiple time scales.

Memory trace is the sum of the integrator activities.

Each item to be learned represented by memory consisting of *leaky integrators* at multiple time scales.

Memory trace is the sum of the integrator activities.

Memory storage rule

Integrators with long time constants get activated only when integrators with short time constants have decayed.

Example

- **10 integrators**
- Stimulus repeatedly presented at various ISIs
- Greater spacing \Rightarrow memory shifts to longer time-scale integrators \Rightarrow more durable memory

Example

10 integrators

- Stimulus repeatedly presented at various ISIs
- Greater spacing ⇒ memory shifts to longer time-scale integrators ⇒ more durable memory

Model is sensitive to predictive utility

Slower forgetting following longer ISI stimulus sequences.

Model was fit to rat habituation and interval timing data,

... but isn't sufficiently well specified to explain human studies of distributed practice.

Two Models Share Key Property: Exponential Decay of Internal Representations

This commonality allows us to integrate the two models.

Combine

- multiple time-scale representation of Staddon's model
- contextual drift of Raaijmakkers' model

 \rightarrow Multiscale Context Model

Multiscale Context Model (MCM)

In pool *p*, all units flip state at rate α_p .

The pools can be different sizes: the relative proportion of units in pool p is γ_p .

Retrieval function is a mixture of exponentials.

Mixture of exponentials can approximate human forgetting functions (Wixted).

Use Simple Formula to Pick Pool Size (y) and Rate (a)

MCM has four free parameters (μ , ν , ω , + one more)

Can we select these parameters such that resulting model yields power law forgetting function and good fits to human data?

Fitting Forgetting Functions I

Cepeda et al., Expt 2B

Fitting Forgetting Functions II

Cepeda et al., Expt 2A

Fitting Forgetting Functions III

 $P(recall) = .9(1 + .5 t)^{-0.9}$

Fitting Forgetting Functions IV $P(recall) = (1 + t)^{-1.4}$

Multiscale Context Model: A Convergence of Theories

Multiscale Context Model: A Convergence of Theories

	Raaijmakkers (2003)	Staddon et al. (2002)
context drift	X	
multiple time-scale representation		X
learning rule	X (dependence of learning on retrieval success)	X (cascaded error correction)

Multiscale Context Model: A Convergence of Theories

	Raaijmakkers (2003)	Staddon et al. (2002)	Our Contribution
context drift	X		
multiple time-scale representation		X	
learning rule	X (dependence of learning on retrieval success)	X (cascaded error correction)	
variable pool size			X
parameterization of multiscale constants			X
neural characterization			X

Cepeda, Coburn, Rohrer, Wixted, Mozer, & Pashler (in press)

P(recall at study 2) P(recall at test)

Cepeda, Coburn, Rohrer, Wixted, Mozer, & Pashler (in press)

P(recall at study 2) P(recall at test)

Cepeda, Coburn, Rohrer, Wixted, Mozer, & Pashler (in press)

P(recall at study 2) P(recall at test) P(recall at test | recall at study 2) P(recall at test | no recall at study 2)

Simulation of Cepeda, Vul, Rohrer, Wixted, & Pashler (in press)

P(recall at study 2) P(recall at test)

Simulation of Cepeda, Vul, Rohrer, Wixted, & Pashler (in press)

P(recall at study 2) P(recall at test)

Simulation of Cepeda, Vul, Rohrer, Wixted, & Pashler (in press)

P(recall at study 2)

P(recall at test)

P(recall at test | recall at study 2)

P(recall at test | no recall at study 2)

ISI

The Relationship Between RI and Optimal ISI

The Relationship Between RI and Optimal ISI

Cepeda et al. metaanalysis

Simulation of Multiscale Context Model

Random parameter settings of model over a large range

Simulation of Multiscale Context Model

Random parameter settings of model over a large range

Why Are We Proposing Yet Another Model?

Previous models

- have many free parameters, and
- obtain only post hoc fits to data.

Our goal is to develop a truly predictive model.

Few free parameters

- Parameters are fully constrained by the forgetting function
- Given forgetting function, optimal distribution of practice can be predicted.

• Exploring DP effects with three study sessions

Human study (Kang, Pashler, and Lindsey)

Comparing predictions of two different models (Lindsey and Mozer)

- * MCM: equal spacing is generally best, but dependent on specific materials
- * Pavlik & Anderson: decreasing spacing best

decreasing				
equal				
increasing				

Exploring DP effects with three study sessions

Human study (Kang, Pashler, and Lindsey)

Comparing predictions of two different models (Lindsey and Mozer)

- * MCM: equal spacing is generally best, but dependent on specific materials
- * Pavlik & Anderson: decreasing spacing best

Exploring DP effects with more complex materials

legal, scientific reasoning (Pashler, Coburn, and Carpenter)

• Exploring DP effects with three study sessions

Human study (Kang, Pashler, and Lindsey)

Comparing predictions of two different models (Lindsey and Mozer)

- * MCM: equal spacing is generally best, but dependent on specific materials
- * Pavlik & Anderson: decreasing spacing best

• Exploring DP effects with more complex materials

legal, scientific reasoning (Pashler, Coburn, and Carpenter)

Developing Facebook app for learning important facts: survival tactics

Natural language interface to allow unrestricted answers (Homaei)

Eventually will use MCM to dynamically optimize study session spacing to promote long-term retention (Lindsey and Mozer)

The End